armi.materials.uraniumOxide module

Uranium Oxide properties.

UO2 is a common ceramic nuclear fuel form. It’s properties are well known. This mostly uses data from [1].

class armi.materials.uraniumOxide.HeatCapacityConstants(c1, c2, c3, theta, Ea)

Bases: tuple

Create new instance of HeatCapacityConstants(c1, c2, c3, theta, Ea)

Ea

Alias for field number 4

c1

Alias for field number 0

c2

Alias for field number 1

c3

Alias for field number 2

theta

Alias for field number 3

class armi.materials.uraniumOxide.UraniumOxide[source]

Bases: FuelMaterial, SimpleSolid

enrichedNuclide = 'U235'

Name of enriched nuclide to be interpreted by enrichment modification methods

REFERENCE_TEMPERATURE = 27
heatCapacityConstants = HeatCapacityConstants(c1=302.27, c2=0.008463, c3=87410000.0, theta=548.68, Ea=18531.7)
propertyUnits = {'heat capacity': 'J/mol-K'}
propertyValidTemperature = {'density': ((300, 3100), 'K'), 'heat capacity': ((298.15, 3120), 'K'), 'linear expansion': ((273, 3120), 'K'), 'linear expansion percent': ((273, 3123.0), 'K'), 'thermal conductivity': ((300, 3000), 'K')}

Dictionary of valid temperatures over which the property models are valid in the format ‘Property Name’: ((Temperature_Lower_Limit, Temperature_Upper_Limit), Temperature_Units)

references = {'heat capacity': 'ORNL/TM-2000/351', 'linear expansion': 'Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation. S.G. Popov, et.al. Oak Ridge National Laboratory. ORNL/TM-2000/351', 'thermal conductivity': 'Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. S. Motoyama. Physical Review B, Volume 60, Number 1, July 1999'}

citation}

Type:

The literature references {property

thermalScatteringLaws = (<ThermalScatteringLaw - Compound: UO2, Nuclides: frozenset({<NaturalNuclideBase U:  Z:92, W:2.380289e+02, Label:U>}), <ThermalScatteringLaw - Compound: UO2, Nuclides: frozenset({<NaturalNuclideBase O:  Z:8, W:1.599930e+01, Label:O>}))

A tuple of ThermalScattering instances with information about thermal scattering.

thermalConductivityTableK = [300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000]
thermalConductivityTable = [7.991, 4.864, 3.64, 2.768, 2.567, 2.294, 2.073, 1.891, 1.847, 1.718]
applyInputParams(U235_wt_frac: Optional[float] = None, TD_frac: Optional[float] = None, *args, **kwargs) None[source]
setDefaultMassFracs() None[source]

UO2 mass fractions. Using Natural Uranium without U234.

meltingPoint()[source]

Melting point in K.

From [1].

density(Tk: float = None, Tc: float = None) float[source]

Density in (g/cc).

Polynomial line fit to data from [1] on page 11.

heatCapacity(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Heat capacity in J/kg-K.

From Section 4.3 in [1]

linearExpansion(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Linear expansion coefficient.

Curve fit from data in [1]

linearExpansionPercent(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Return dL/L.

From Section 3.3 of [1]

thermalConductivity(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Thermal conductivity.

Ref: Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. S. Motoyama. Physical Review B, Volume 60, Number 1, July 1999

class armi.materials.uraniumOxide.UO2[source]

Bases: UraniumOxide

Another name for UraniumOxide.