armi.materials.ht9 module
Simple/academic/incomplete HT9 ferritic-martensitic stainless steel material.
This is a famous SFR cladding/duct material because it doesn’t void swell that much.
The data in this file exists for testing and demonstration purposes only. Developers of ARMI applications can refer to this file for a fully worked example of an ARMI material. And this material has proven useful for testing. The data contained in this file should not be used in production simulations.
- class armi.materials.ht9.HT9[source]
Bases:
MaterialSimplified HT9 stainless steel.
Warning
This is an academic-quality material. When more detail is desired, a custom material should be implemented via a user-provided plugin.
[MFH] (1,2,3)Metallic Fuels Handbook Hofman, G. L., Billone, M. C., Koenig, J. F., Kramer, J. M., Lambert, J. D. B., Leibowitz, L., Orechwa, Y., Pedersen, D. R., Porter, D. L., Tsai, H., and Wright, A. E. Metallic Fuels Handbook. United States: N. p., 2019. Web. doi:10.2172/1506477. https://www.osti.gov/biblio/1506477-metallic-fuels-handbook
- propertyValidTemperature = {'linear expansion': ((293, 1050), 'K')}
Dictionary of valid temperatures over which the property models are valid in the format ‘Property Name’: ((Temperature_Lower_Limit, Temperature_Upper_Limit), Temperature_Units)
- setDefaultMassFracs()[source]
HT9 mass fractions.
From E.2-1 of [MFH]. https://www.osti.gov/biblio/1506477-metallic-fuels-handbook
- linearExpansionPercent(Tk=None, Tc=None)[source]
Gets the linear expansion from E.2.2.2 in [MFH] for HT9.
The ref gives dL/L0 in percent and is valid from 293 - 1050 K.
- thermalConductivity(Tk=None, Tc=None)[source]
Thermal conductivity in W/m-K).
From [MFH], E.2.2.3, eq 5.
Tip
This can probably be sped up with a polynomial evaluator.
- density(Tk: float = None, Tc: float = None) float
Return density that preserves mass when thermally expanded in 3D (in g/cm^3).
Notes
Since refDens is specified at the material-dep reference case, we don’t need to specify the reference temperature. It is already consistent with linearExpansion Percent. - p*(dp/p(T) + 1) =p*( p + dp(T) )/p = p + dp(T) = p(T) - dp/p = (1-(1 + dL/L)**3)/(1 + dL/L)**3