armi.materials.siC module
Silicon Carbide.
- class armi.materials.siC.SiC[source]
Bases:
Material
Silicon Carbide.
- thermalScatteringLaws = (<ThermalScatteringLaw - Compound: SiC, Nuclides: frozenset({<NaturalNuclideBase C: Z:6, W:1.201114e+01, Label:C>}), <ThermalScatteringLaw - Compound: SiC, Nuclides: frozenset({<NaturalNuclideBase SI: Z:14, W:2.808538e+01, Label:SI>}))
A tuple of
ThermalScattering
instances with information about thermal scattering.
- references = {'cumulative linear expansion': ['Munro, Material Properties of a-SiC, J. Phys. Chem. Ref. Data, Vol. 26, No. 5, 1997'], 'density': ['Munro, Material Properties of a-SiC, J. Phys. Chem. Ref. Data, Vol. 26, No. 5, 1997'], 'heat capacity': ['Munro, Material Properties of a-SiC, J. Phys. Chem. Ref. Data, Vol. 26, No. 5, 1997'], 'thermal conductivity': ['Munro, Material Properties of a-SiC, J. Phys. Chem. Ref. Data, Vol. 26, No. 5, 1997']}
citation}
- Type:
The literature references {property
- propertyEquation = {'cumulative linear expansion': '(4.22 + 8.33E-4*Tc-3.51*math.exp(-0.00527*Tc))*1.0E-6', 'density': '(rho0*(1 + cA*(Tc - Tc0))**(-3))*1.0E3', 'heat capacity': '1110 + 0.15*Tc - 425*math.exp(-0.003*Tc)', 'thermal conductivity': '(52000*math.exp(-1.24E-5*Tc))/(Tc+437)'}
- propertyUnits = {'cumulative linear expansion': 'K^-1', 'density': 'kg m^-3', 'heat capacity': 'J kg^-1 K^-1', 'melting point': 'K', 'thermal conductivity': 'W m^-1 K^-1'}
- propertyNotes = {}
- propertyValidTemperature = {'cumulative linear expansion': ((0, 1500), 'C'), 'density': ((0, 1500), 'C'), 'heat capacity': ((0, 2000), 'C'), 'thermal conductivity': ((0, 2000), 'C')}
Dictionary of valid temperatures over which the property models are valid in the format ‘Property Name’: ((Temperature_Lower_Limit, Temperature_Upper_Limit), Temperature_Units)
- refTempK = 298.15
- density(Tk: float = None, Tc: float = None) float
Return density that preserves mass when thermally expanded in 3D (in g/cm^3).
Notes
Since refDens is specified at the material-dep reference case, we don’t need to specify the reference temperature. It is already consistent with linearExpansion Percent. - p*(dp/p(T) + 1) =p*( p + dp(T) )/p = p + dp(T) = p(T) - dp/p = (1-(1 + dL/L)**3)/(1 + dL/L)**3