armi.materials.inconel600 module

Inconel600.

class armi.materials.inconel600.Inconel600[source]

Bases: Material

propertyValidTemperature = {'heat capacity': ((20, 900), 'C'), 'linear expansion': ((21.0, 900.0), 'C'), 'linear expansion percent': ((21.0, 900.0), 'C'), 'thermal conductivity': ((20.0, 800.0), 'C')}

Dictionary of valid temperatures over which the property models are valid in the format ‘Property Name’: ((Temperature_Lower_Limit, Temperature_Upper_Limit), Temperature_Units)

references = {'density': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf', 'linear expansion': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf', 'linear expansion percent': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf', 'mass fractions': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf', 'specific heat': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf', 'thermalConductivity': 'http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf'}

citation}

Type:

The literature references {property

refTempK = 294.15
setDefaultMassFracs()[source]
polyfitThermalConductivity(power=2)[source]

Calculates the coefficients of a polynomial fit for thermalConductivity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients.

Parameters:

power (int, optional) – power of the polynomial fit equation

Return type:

list of length ‘power’ containing the polynomial fit coefficients for thermal conductivity.

thermalConductivity(Tk=None, Tc=None)[source]

Returns the thermal conductivity of Inconel600.

Parameters:
  • Tk (float, optional) – temperature in (K)

  • Tc (float, optional) – Temperature in (C)

Returns:

thermalCond – thermal conductivity in W/m/C

Return type:

float

polyfitHeatCapacity(power=2)[source]

Calculates the coefficients of a polynomial fit for heatCapacity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients.

Parameters:

power (int, optional) – power of the polynomial fit equation

Return type:

list of length ‘power’ containing the polynomial fit coefficients for heat capacity.

heatCapacity(Tk=None, Tc=None)[source]

Returns the specific heat capacity of Inconel600.

Parameters:
  • Tk (float, optional) – Temperature in Kelvin.

  • Tc (float, optional) – Temperature in degrees Celsius.

Returns:

heatCapacity – heat capacity in J/kg/C

Return type:

float

polyfitLinearExpansionPercent(power=2)[source]

Calculates the coefficients of a polynomial fit for linearExpansionPercent. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf.

Uses mean CTE values to find percent thermal strain values. Fits a polynomial to the data set and returns the coefficients.

Parameters:

power (int, optional) – power of the polynomial fit equation

Return type:

list of length ‘power’ containing the polynomial fit coefficients for linearExpansionPercent

linearExpansionPercent(Tk=None, Tc=None)[source]

Returns percent linear expansion of Inconel600.

Parameters:
  • Tk (float) – temperature in (K)

  • Tc (float) – Temperature in (C)

Return type:

linExpPercent in %-m/m/C

linearExpansion(Tk=None, Tc=None)[source]

From http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf.

Using the correlation for linearExpansionPercent, the 2nd order polynomial is divided by 100 to convert from percent strain to strain, then differentiated with respect to temperature to find the correlation for instantaneous linear expansion.

i.e. for a linearExpansionPercent correlation of a*Tc**2 + b*Tc + c, the linearExpansion correlation is 2*a/100*Tc + b/100

2*(3.722e-7/100.0)*Tc + 1.303e-3/100.0

Parameters:
  • Tk (float) – temperature in (K)

  • Tc (float) – Temperature in (C)

Return type:

linExp in m/m/C

density(Tk: float = None, Tc: float = None) float

Return density that preserves mass when thermally expanded in 3D (in g/cm^3).

Notes

Since refDens is specified at the material-dep reference case, we don’t need to specify the reference temperature. It is already consistent with linearExpansion Percent. - p*(dp/p(T) + 1) =p*( p + dp(T) )/p = p + dp(T) = p(T) - dp/p = (1-(1 + dL/L)**3)/(1 + dL/L)**3