# Copyright 2019 TerraPower, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module makes heavy use of matplotlib. Beware that plots generated with matplotlib
may not free their memory, even after the plot is closed, and excessive use of
plotting functions may gobble up all of your machine's memory.
Therefore, you should use these plotting tools judiciously. It is not advisable to,
for instance, plot some sequence of objects in a loop at every time node. If you start
to see your memory usage grow inexplicably, you should question any plots that you are
generating.
"""
import collections
import itertools
import math
import os
import re
from matplotlib.collections import PatchCollection
from matplotlib.widgets import Slider
from mpl_toolkits import axes_grid1
from ordered_set import OrderedSet
import matplotlib.colors as mcolors
import matplotlib.patches
import matplotlib.pyplot as plt
import matplotlib.text as mpl_text
import numpy as np
from armi import runLog
from armi.bookkeeping import report
from armi.materials import custom
from armi.reactor import grids
from armi.reactor.components import Helix, Circle, DerivedShape
from armi.reactor.components.basicShapes import Hexagon, Rectangle, Square
from armi.reactor.flags import Flags
from armi.utils import hexagon
LUMINANCE_WEIGHTS = np.array([0.3, 0.59, 0.11, 0.0])
[docs]def colorGenerator(skippedColors=10):
"""
Selects a color from the matplotlib css color database.
Parameters
----------
skippedColors: int
Number of colors to skip in the matplotlib CSS color database when generating the
next color. Without skipping colors the next color may be similar to the previous
color.
Notes
-----
Will cycle indefinitely to accommodate large cores. Colors will repeat.
"""
colors = list(mcolors.CSS4_COLORS)
for start in itertools.cycle(range(20, 20 + skippedColors)):
for i in range(start, len(colors), skippedColors):
yield colors[i]
[docs]def plotBlockDepthMap(
core,
param="pdens",
fName=None,
bare=False,
cmapName="jet",
labels=(),
labelFmt="{0:.3f}",
legendMap=None,
fontSize=None,
minScale=None,
maxScale=None,
axisEqual=False,
makeColorBar=False,
cBarLabel="",
title="",
shuffleArrows=False,
titleSize=25,
depthIndex=0,
):
"""
Plot a param distribution in xy space with the ability to page through depth.
Notes
-----
This is useful for visualizing the spatial distribution of a param through the core.
Blocks could possibly not be in alignment between assemblies, but the depths
viewable are based on the first fuel assembly.
Parameters
----------
The kwarg definitions are the same as those of ``plotFaceMap``.
depthIndex: int
The the index of the elevation to show block params.
The index is determined by the index of the blocks in the first fuel assembly.
"""
fuelAssem = core.getFirstAssembly(typeSpec=Flags.FUEL)
if not fuelAssem:
raise ValueError(
"Could not find fuel assembly. "
"This method uses the first fuel blocks mesh for the axial mesh of the plot. "
"Cannot proceed without fuel block."
)
# block mid point elevation
elevations = [elev for _b, elev in fuelAssem.getBlocksAndZ()]
data = []
for elevation in elevations:
paramValsAtElevation = []
for a in core:
paramValsAtElevation.append(a.getBlockAtElevation(elevation).p[param])
data.append(paramValsAtElevation)
data = np.array(data)
fig = plt.figure(figsize=(12, 12), dpi=100)
# Make these now, so they are still referenceable after plotFaceMap.
patches = _makeAssemPatches(core)
collection = PatchCollection(patches, cmap=cmapName, alpha=1.0)
texts = []
plotFaceMap(
core,
param=param,
vals="peak",
data=None, # max values so legend is set correctly
bare=bare,
cmapName=cmapName,
labels=labels,
labelFmt=labelFmt,
legendMap=legendMap,
fontSize=fontSize,
minScale=minScale,
maxScale=maxScale,
axisEqual=axisEqual,
makeColorBar=makeColorBar,
cBarLabel=cBarLabel,
title=title,
shuffleArrows=shuffleArrows,
titleSize=titleSize,
referencesToKeep=[patches, collection, texts],
)
# make space for the slider
fig.subplots_adjust(bottom=0.15)
ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
# This controls what the slider does.
def update(i):
# int, since we are indexing an array.
i = int(i)
collection.set_array(data[i, :])
for valToPrint, text in zip(data[i, :], texts):
text.set_text(labelFmt.format(valToPrint))
# Slider doesn't seem to work unless assigned to variable
_slider = DepthSlider(
ax_slider, "Depth(cm)", elevations, update, "green", valInit=depthIndex
)
if fName:
plt.savefig(fName, dpi=150)
plt.close()
else:
plt.show()
return fName
[docs]def plotFaceMap(
core,
param="pdens",
vals="peak",
data=None,
fName=None,
bare=False,
cmapName="jet",
labels=(),
labelFmt="{0:.3f}",
legendMap=None,
fontSize=None,
minScale=None,
maxScale=None,
axisEqual=False,
makeColorBar=False,
cBarLabel="",
title="",
shuffleArrows=False,
titleSize=25,
referencesToKeep=None,
):
"""
Plot a face map of the core.
Parameters
----------
core: Core
The core to plot.
param : str, optional
The block-parameter to plot. Default: pdens
vals : str, optional
Can be 'peak', 'average', or 'sum'. The type of vals to produce. Will find peak,
average, or sum of block values in an assembly. Default: peak
data : list, optional
rather than using param and vals, use the data supplied as is. It must be in the
same order as iter(r).
fName : str, optional
File name to create. If none, will show on screen.
bare : bool, optional
If True, will skip axis labels, etc.
cmapName : str
The name of the matplotlib colormap to use. Default: jet
Other possibilities: http://matplotlib.org/examples/pylab_examples/show_colormaps.html
labels : list of str, optional
Data labels corresponding to data values.
labelFmt : str, optional
A format string that determines how the data is printed if ``labels`` is not provided.
E.g. ``"{:.1e}"``
legendMap : list, optional
A tuple list of (value, lable, decription), to define the data in the legend.
fontSize : int, optional
Font size in points
minScale : float, optional
The minimum value for the low color on your colormap (to set scale yourself)
Default: autoscale
maxScale : float, optional
The maximum value for the high color on your colormap (to set scale yourself)
Default: autoscale
axisEqual : Boolean, optional
If True, horizontal and vertical axes are scaled equally such that a circle
appears as a circle rather than an ellipse.
If False, this scaling constraint is not imposed.
makeColorBar : Boolean, optional
If True, a vertical color bar is added on the right-hand side of the plot.
If False, no color bar is added.
cBarLabel : String, optional
If True, this string is the color bar quantity label.
If False, the color bar will have no label.
When makeColorBar=False, cBarLabel affects nothing.
title : String, optional
If True, the string is added as the plot title.
If False, no plot title is added.
shuffleArrows : list, optional
Adds arrows indicating fuel shuffling maneuvers
titleSize : int, optional
Size of title on plot
referencesToKeep : list, optional
References to previous plots you might want to plot on: patches, collection, texts.
Examples
--------
Plotting a BOL assembly type facemap with a legend::
>>> plotFaceMap(core, param='typeNumAssem', cmapName='RdYlBu')
"""
if referencesToKeep:
patches, collection, texts = referencesToKeep
fig, ax = plt.gcf(), plt.gca()
else:
fig, ax = plt.subplots(figsize=(12, 12), dpi=100)
# set patch (shapes such as hexagon) heat map values
patches = _makeAssemPatches(core)
collection = PatchCollection(patches, cmap=cmapName, alpha=1.0)
texts = []
ax.set_title(title, size=titleSize)
# get param vals
if data is None:
data = []
for a in core:
if vals == "peak":
data.append(a.getMaxParam(param))
elif vals == "average":
data.append(a.calcAvgParam(param))
elif vals == "sum":
data.append(a.calcTotalParam(param))
else:
raise ValueError(
"{0} is an invalid entry for `vals` in plotFaceMap. Use peak, average, or sum.".format(
vals
)
)
if not labels:
labels = [None] * len(data)
if len(data) != len(labels):
raise ValueError(
"Data had length {}, but lables had length {}. "
"They should be equal length.".format(len(data), len(labels))
)
collection.set_array(np.array(data))
if minScale or maxScale:
collection.set_clim([minScale, maxScale])
else:
collection.norm.autoscale(np.array(data))
ax.add_collection(collection)
# Makes text in the center of each shape displaying the values.
# (The text is either black or white depending on the background color it is written on)
_setPlotValText(ax, texts, core, data, labels, labelFmt, fontSize, collection)
# allow a color bar option
if makeColorBar:
collection2 = PatchCollection(patches, cmap=cmapName, alpha=1.0)
if minScale and maxScale:
collection2.set_array(np.array([minScale, maxScale]))
else:
collection2.set_array(np.array(data))
if "radial" in cBarLabel:
colbar = fig.colorbar(
collection2, ticks=[x + 1 for x in range(max(data))], shrink=0.43
)
else:
colbar = fig.colorbar(collection2, ax=ax, shrink=0.43)
colbar.set_label(cBarLabel, size=20)
colbar.ax.tick_params(labelsize=16)
if legendMap is not None:
legend = _createLegend(legendMap, collection)
else:
legend = None
if axisEqual: # don't "squish" patches vertically or horizontally
ax.set_aspect("equal", "datalim")
ax.autoscale_view(tight=True)
# make it 2-D, for now...
shuffleArrows = shuffleArrows or []
for (sourceCoords, destinationCoords) in shuffleArrows:
ax.annotate(
"",
xy=destinationCoords[:2],
xytext=sourceCoords[:2],
arrowprops={"arrowstyle": "->", "color": "white"},
)
if bare:
ax.set_xticks([])
ax.set_yticks([])
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["bottom"].set_visible(False)
else:
ax.set_xlabel("x (cm)")
ax.set_ylabel("y (cm)")
if fName:
if legend:
# expand so the legend fits if necessary
pltKwargs = {"bbox_extra_artists": (legend,), "bbox_inches": "tight"}
else:
pltKwargs = {}
try:
plt.savefig(fName, dpi=150, **pltKwargs)
except IOError:
runLog.warning(
"Cannot update facemap at {0}: IOError. Is the file open?"
"".format(fName)
)
plt.close(fig)
elif referencesToKeep:
# Don't show yet, since it will be updated.
return fName
else:
# Never close figures after a .show()
# because they're being used interactively e.g.
# in a live tutorial or by the doc gallery
plt.show()
return fName
[docs]def close(fig=None):
"""
Wrapper for matplotlib close.
This is useful to avoid needing to import plotting and matplotlib.
The plot functions cannot always close their figure if it is going
to be used somewhere else after becoming active (e.g. in reports
or gallery examples).
"""
plt.close(fig)
def _makeAssemPatches(core):
"""Return a list of assembly shaped patches for each assembly."""
patches = []
if isinstance(core.spatialGrid, grids.HexGrid):
nSides = 6
elif isinstance(core.spatialGrid, grids.ThetaRZGrid):
raise TypeError(
"This plot function is not currently supported for ThetaRZGrid grids."
)
else:
nSides = 4
pitch = core.getAssemblyPitch()
for a in core:
x, y, _ = a.spatialLocator.getLocalCoordinates()
if nSides == 6:
if core.spatialGrid.cornersUp:
orientation = 0
else:
orientation = math.pi / 2.0
assemPatch = matplotlib.patches.RegularPolygon(
(x, y), nSides, radius=pitch / math.sqrt(3), orientation=orientation
)
elif nSides == 4:
# for rectangle x, y is defined as sides instead of center
assemPatch = matplotlib.patches.Rectangle(
(x - pitch[0] / 2, y - pitch[1] / 2), *pitch
)
else:
raise ValueError(f"Unexpected number of sides: {nSides}.")
patches.append(assemPatch)
return patches
def _setPlotValText(ax, texts, core, data, labels, labelFmt, fontSize, collection):
"""Write param values down, and return text so it can be edited later."""
_ = core.getAssemblyPitch()
for a, val, label in zip(core, data, labels):
x, y, _ = a.spatialLocator.getLocalCoordinates()
cmap = collection.get_cmap()
patchColor = np.asarray(cmap(collection.norm(val)))
luminance = patchColor.dot(LUMINANCE_WEIGHTS)
dark = luminance < 0.5
if dark:
color = "white"
else:
color = "black"
# Write text on top of patch locations.
if label is None and labelFmt is not None:
# Write the value
labelText = labelFmt.format(val)
text = ax.text(
x,
y,
labelText,
zorder=1,
ha="center",
va="center",
fontsize=fontSize,
color=color,
)
elif label is not None:
text = ax.text(
x,
y,
label,
zorder=1,
ha="center",
va="center",
fontsize=fontSize,
color=color,
)
else:
# labelFmt was none, so they don't want any text plotted
continue
texts.append(text)
def _createLegend(legendMap, collection, size=9, shape=Hexagon):
"""Make special legend for the assembly face map plot with assembly counts, and Block Diagrams."""
class AssemblyLegend:
"""
Custom Legend artist handler.
Matplotlib allows you to define a class that implements ``legend_artist`` to give you
full control over how the legend keys and labels are drawn. This is done here to get
Hexagons with Letters in them on the legend, which is not a built-in legend option.
See: http://matplotlib.org/users/legend_guide.html#implementing-a-custom-legend-handler
"""
def legend_artist(self, _legend, orig_handle, _fontsize, handlebox):
letter, index = orig_handle
x0, y0 = handlebox.xdescent, handlebox.ydescent
width, height = handlebox.width, handlebox.height
x = x0 + width / 2.0
y = y0 + height / 2.0
normVal = collection.norm(index)
cmap = collection.get_cmap()
colorRgb = cmap(normVal)
if shape == Hexagon:
patch = matplotlib.patches.RegularPolygon(
(x, y),
6,
radius=height,
orientation=math.pi / 2.0,
facecolor=colorRgb,
transform=handlebox.get_transform(),
)
elif shape == Rectangle:
patch = matplotlib.patches.Rectangle(
(x - height / 2, y - height / 2),
height * 2,
height * 2,
facecolor=colorRgb,
transform=handlebox.get_transform(),
)
else:
patch = matplotlib.patches.Circle(
(x, y),
radius=height,
facecolor=colorRgb,
transform=handlebox.get_transform(),
)
luminance = np.array(colorRgb).dot(LUMINANCE_WEIGHTS)
dark = luminance < 0.5
if dark:
color = "white"
else:
color = "black"
handlebox.add_artist(patch)
txt = mpl_text.Text(
x=x, y=y, text=letter, ha="center", va="center", size=7, color=color
)
handlebox.add_artist(txt)
return (patch, txt)
ax = plt.gca()
keys = []
labels = []
for value, label, description in legendMap:
keys.append((label, value))
labels.append(description)
legend = ax.legend(
keys,
labels,
handler_map={tuple: AssemblyLegend()},
loc="center left",
bbox_to_anchor=(1.0, 0.5),
frameon=False,
prop={"size": size},
)
return legend
[docs]class DepthSlider(Slider):
"""Page slider used to view params at different depths."""
def __init__(
self,
ax,
sliderLabel,
depths,
updateFunc,
selectedDepthColor,
fontsize=8,
valInit=0,
**kwargs,
):
# The color of the currently displayed depth page.
self.selectedDepthColor = selectedDepthColor
self.nonSelectedDepthColor = "w"
self.depths = depths
# Make the selection depth buttons
self.depthSelections = []
numDepths = float(len(depths))
rectangleBot = 0
textYCoord = 0.5
# startBoundaries go from zero to just below 1.
leftBoundary = [i / numDepths for i, _depths in enumerate(depths)]
for leftBoundary, depth in zip(leftBoundary, depths):
# First depth (leftBoundary==0) is on, rest are off.
if leftBoundary == 0:
color = self.selectedDepthColor
else:
color = self.nonSelectedDepthColor
depthSelectBox = matplotlib.patches.Rectangle(
(leftBoundary, rectangleBot),
1.0 / numDepths,
1,
transform=ax.transAxes,
facecolor=color,
)
ax.add_artist(depthSelectBox)
self.depthSelections.append(depthSelectBox)
# Make text halfway into box
textXCoord = leftBoundary + 0.5 / numDepths
ax.text(
textXCoord,
textYCoord,
"{:.1f}".format(depth),
ha="center",
va="center",
transform=ax.transAxes,
fontsize=fontsize,
)
# Make forward and backward button
backwardArrow, forwardArrow = "$\u25C0$", "$\u25B6$"
divider = axes_grid1.make_axes_locatable(ax)
buttonWidthPercent = "5%"
backwardAxes = divider.append_axes("right", size=buttonWidthPercent, pad=0.03)
forwardAxes = divider.append_axes("right", size=buttonWidthPercent, pad=0.03)
self.backButton = matplotlib.widgets.Button(
backwardAxes,
label=backwardArrow,
color=self.nonSelectedDepthColor,
hovercolor=self.selectedDepthColor,
)
self.backButton.label.set_fontsize(fontsize)
self.backButton.on_clicked(self.previous)
self.forwardButton = matplotlib.widgets.Button(
forwardAxes,
label=forwardArrow,
color=self.nonSelectedDepthColor,
hovercolor=self.selectedDepthColor,
)
self.forwardButton.label.set_fontsize(fontsize)
self.forwardButton.on_clicked(self.next)
# init at end since slider will set val to 0, and it needs to have state
# setup before doing that
Slider.__init__(self, ax, sliderLabel, 0, len(depths), valinit=0, **kwargs)
self.on_changed(updateFunc)
self.set_val(valInit) # need to set after updateFunc is added.
# Turn off value visibility since the buttons text shows the value
self.valtext.set_visible(False)
[docs] def set_val(self, val):
"""
Set the value and update the color.
Notes
-----
valmin/valmax are set on the parent to 0 and len(depths).
"""
val = int(val)
# valmax is not allowed, since it is out of the array.
# valmin is allowed since 0 index is in depth array.
if val < self.valmin or val >= self.valmax:
# invalid, so ignore
return
# activate color is first since we still have access to self.val
self.updatePageDepthColor(val)
Slider.set_val(self, val)
[docs] def next(self, _event):
"""Move forward to the next depth (page)."""
self.set_val(self.val + 1)
[docs] def previous(self, _event):
"""Move backward to the previous depth (page)."""
self.set_val(self.val - 1)
[docs] def updatePageDepthColor(self, newVal):
"""Update the page colors."""
self.depthSelections[self.val].set_facecolor(self.nonSelectedDepthColor)
self.depthSelections[newVal].set_facecolor(self.selectedDepthColor)
[docs]def plotAssemblyTypes(
blueprints=None,
fileName=None,
assems=None,
maxAssems=None,
showBlockAxMesh=True,
yAxisLabel=None,
title=None,
) -> plt.Figure:
"""
Generate a plot showing the axial block and enrichment distributions of each assembly type in the core.
Parameters
----------
blueprints: Blueprints
The blueprints to plot assembly types of. (Either this or ``assems`` must be non-None.)
fileName : str or None
Base for filename to write, or None for just returning the fig
assems: list
list of assembly objects to be plotted. (Either this or ``blueprints`` must be non-None.)
maxAssems: integer
maximum number of assemblies to plot in the assems list.
showBlockAxMesh: bool
if true, the axial mesh information will be displayed on the right side of the assembly plot.
yAxisLabel: str
Optionally, provide a label for the Y-axis.
title: str
Optionally, provide a title for the plot.
Returns
-------
fig : plt.Figure
The figure object created
"""
# input validation
if assems is None and blueprints is None:
raise ValueError(
"At least one of these inputs must be non-None: blueprints, assems"
)
# handle defaults
if assems is None:
assems = list(blueprints.assemblies.values())
if not isinstance(assems, (list, set, tuple)):
assems = [assems]
if maxAssems is not None and not isinstance(maxAssems, int):
raise TypeError("Maximum assemblies should be an integer")
numAssems = len(assems)
if maxAssems is None:
maxAssems = numAssems
if yAxisLabel is None:
yAxisLabel = "THERMALLY EXPANDED AXIAL HEIGHTS (CM)"
if title is None:
title = "Assembly Designs"
# Set assembly/block size constants
yBlockHeights = []
yBlockAxMesh = OrderedSet()
assemWidth = 5.0
assemSeparation = 0.3
xAssemLoc = 0.5
xAssemEndLoc = numAssems * (assemWidth + assemSeparation) + assemSeparation
# Setup figure
fig, ax = plt.subplots(figsize=(15, 15), dpi=300)
for index, assem in enumerate(assems):
isLastAssem = index == numAssems - 1
(xBlockLoc, yBlockHeights, yBlockAxMesh) = _plotBlocksInAssembly(
ax,
assem,
isLastAssem,
yBlockHeights,
yBlockAxMesh,
xAssemLoc,
xAssemEndLoc,
showBlockAxMesh,
)
xAxisLabel = re.sub(" ", "\n", assem.getType().upper())
ax.text(
xBlockLoc + assemWidth / 2.0,
-5,
xAxisLabel,
fontsize=13,
ha="center",
va="top",
)
xAssemLoc += assemWidth + assemSeparation
# Set up plot layout
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.yaxis.set_ticks_position("left")
yBlockHeights.insert(0, 0.0)
yBlockHeights.sort()
yBlockHeightDiffs = np.diff(
yBlockHeights
) # Compute differential heights between each block
ax.set_yticks([0.0] + list(set(np.cumsum(yBlockHeightDiffs))))
ax.xaxis.set_visible(False)
ax.set_title(title, y=1.03)
ax.set_ylabel(yAxisLabel, labelpad=20)
ax.set_xlim([0.0, 0.5 + maxAssems * (assemWidth + assemSeparation)])
# Plot and save figure
ax.plot()
if fileName:
fig.savefig(fileName)
runLog.debug("Writing assem layout {} in {}".format(fileName, os.getcwd()))
plt.close(fig)
return fig
def _plotBlocksInAssembly(
axis,
assem,
isLastAssem,
yBlockHeights,
yBlockAxMesh,
xAssemLoc,
xAssemEndLoc,
showBlockAxMesh,
):
# Set dictionary of pre-defined block types and colors for the plot
lightsage = "xkcd:light sage"
blockTypeColorMap = collections.OrderedDict(
{
"fuel": "tomato",
"shield": "cadetblue",
"reflector": "darkcyan",
"aclp": "lightslategrey",
"plenum": "white",
"duct": "plum",
"control": lightsage,
"handling socket": "lightgrey",
"grid plate": "lightgrey",
"inlet nozzle": "lightgrey",
}
)
# Initialize block positions
blockWidth = 5.0
yBlockLoc = 0
xBlockLoc = xAssemLoc
xTextLoc = xBlockLoc + blockWidth / 20.0
for b in assem:
blockHeight = b.getHeight()
blockXsId = b.p.xsType
yBlockCenterLoc = yBlockLoc + blockHeight / 2.5
# Get the basic text label for the block
try:
blockType = [
bType
for bType in blockTypeColorMap.keys()
if b.hasFlags(Flags.fromString(bType))
][0]
color = blockTypeColorMap[blockType]
except IndexError:
blockType = b.getType()
color = "grey"
# Get the detailed text label for the block
dLabel = ""
if b.hasFlags(Flags.FUEL):
dLabel = " {:0.2f}%".format(b.getFissileMassEnrich() * 100)
elif b.hasFlags(Flags.CONTROL):
blockType = "ctrl"
dLabel = " {:0.2f}%".format(b.getBoronMassEnrich() * 100)
dLabel += " ({})".format(blockXsId)
# Set up block rectangle
blockPatch = matplotlib.patches.Rectangle(
(xBlockLoc, yBlockLoc),
blockWidth,
blockHeight,
facecolor=color,
alpha=0.7,
edgecolor="k",
lw=1.0,
ls="solid",
)
axis.add_patch(blockPatch)
axis.text(
xTextLoc,
yBlockCenterLoc,
blockType.upper() + dLabel,
ha="left",
fontsize=10,
)
yBlockLoc += blockHeight
yBlockHeights.append(yBlockLoc)
# Add location, block heights, and axial mesh points to ordered set
yBlockAxMesh.add((yBlockCenterLoc, blockHeight, b.p.axMesh))
# Add the block heights, block number of axial mesh points on the far right of the plot.
if isLastAssem and showBlockAxMesh:
xEndLoc = 0.5 + xAssemEndLoc
for bCenter, bHeight, axMeshPoints in yBlockAxMesh:
axis.text(
xEndLoc,
bCenter,
"{} cm ({})".format(bHeight, axMeshPoints),
fontsize=10,
ha="left",
)
return xBlockLoc, yBlockHeights, yBlockAxMesh
[docs]def plotBlockFlux(core, fName=None, bList=None, peak=False, adjoint=False, bList2=[]):
"""
Produce energy spectrum plot of real and/or adjoint flux in one or more blocks.
Parameters
----------
core : Core
Core object
fName : str, optional
the name of the plot file to produce. If none, plot will be shown. A text file with
the flux values will also be generated if this is non-empty.
bList : iterable, optional
is a single block or a list of blocks to average over. If no bList, full core is assumed.
peak : bool, optional
a flag that will produce the peak as well as the average on the plot.
adjoint : bool, optional
plot the adjoint as well.
bList2 : list, optional
a separate list of blocks that will also be plotted on a separate axis on the same plot.
This is useful for comparing flux in some blocks with flux in some other blocks.
"""
class BlockListFlux:
def __init__(
self, nGroup, blockList=[], adjoint=False, peak=False, primary=False
):
self.nGroup = nGroup
self.blockList = blockList
self.adjoint = adjoint
self.peak = peak
self.avgHistogram = None
self.eHistogram = None
self.peakHistogram = None
self.E = None
if not blockList:
self.avgFlux = np.zeros(self.nGroup)
self.peakFlux = np.zeros(self.nGroup)
self.lineAvg = "-"
self.linePeak = "-"
else:
self.avgFlux = np.zeros(self.nGroup)
self.peakFlux = np.zeros(self.nGroup)
if self.adjoint:
self.labelAvg = "Average Adjoint Flux"
self.labelPeak = "Peak Adjoint Flux"
else:
self.labelAvg = "Average Flux"
self.labelPeak = "Peak Flux"
if primary:
self.lineAvg = "-"
self.linePeak = "-"
else:
self.lineAvg = "r--"
self.linePeak = "k--"
def calcAverage(self):
for b in self.blockList:
thisFlux = np.array(b.getMgFlux(adjoint=self.adjoint))
self.avgFlux += np.array(thisFlux)
if sum(thisFlux) > sum(self.peakFlux):
self.peakFlux = thisFlux
self.avgFlux = self.avgFlux / len(bList)
def setEnergyStructure(self, upperEnergyBounds):
self.E = [eMax / 1e6 for eMax in upperEnergyBounds]
def makePlotHistograms(self):
self.eHistogram, self.avgHistogram = makeHistogram(self.E, self.avgFlux)
if self.peak:
_, self.peakHistogram = makeHistogram(self.E, self.peakFlux)
def checkSize(self):
if len(self.E) != len(self.avgFlux):
runLog.error(self.avgFlux)
raise
def getTable(self):
return enumerate(zip(self.E, self.avgFlux, self.peakFlux))
if bList is None:
bList = core.getBlocks()
bList = list(bList)
if adjoint and bList2:
runLog.warning("Cannot plot adjoint flux with bList2 argument")
return
elif adjoint:
bList2 = bList
try:
G = len(core.lib.neutronEnergyUpperBounds)
except Exception:
runLog.warning("No ISOTXS library attached so no flux plots.")
return
BlockListFluxes = set()
bf1 = BlockListFlux(G, blockList=bList, peak=peak, primary=True)
BlockListFluxes.add(bf1)
if bList2:
bf2 = BlockListFlux(G, blockList=bList2, adjoint=adjoint, peak=peak)
BlockListFluxes.add(bf2)
for bf in BlockListFluxes:
bf.calcAverage()
bf.setEnergyStructure(core.lib.neutronEnergyUpperBounds)
bf.checkSize()
bf.makePlotHistograms()
if fName:
# write a little flux text file
txtFileName = os.path.splitext(fName)[0] + ".txt"
with open(txtFileName, "w") as f:
f.write(
"{0:16s} {1:16s} {2:16s}\n".format(
"Energy_Group", "Average_Flux", "Peak_Flux"
)
)
for _, (eMax, avgFlux, peakFlux) in bf1.getTable():
f.write("{0:12E} {1:12E} {2:12E}\n".format(eMax, avgFlux, peakFlux))
if max(bf1.avgFlux) <= 0.0:
runLog.warning(
"Cannot plot flux with maxval=={0} in {1}".format(bf1.avgFlux, bList[0])
)
return
plt.figure()
plt.plot(bf1.eHistogram, bf1.avgHistogram, bf1.lineAvg, label=bf1.labelAvg)
if peak:
plt.plot(bf1.eHistogram, bf1.peakHistogram, bf1.linePeak, label=bf1.labelPeak)
ax = plt.gca()
ax.set_xscale("log")
ax.set_yscale("log")
plt.xlabel("Energy (MeV)")
plt.ylabel("Flux (n/cm$^2$/s)")
if peak or bList2:
plt.legend(loc="lower right")
plt.grid(color="0.70")
if bList2:
if adjoint:
plt.twinx()
plt.ylabel("Adjoint Flux (n/cm$^2$/s)", rotation=270)
ax2 = plt.gca()
ax2.set_yscale("log")
plt.plot(bf2.eHistogram, bf2.avgHistogram, bf2.lineAvg, label=bf2.labelAvg)
if peak and not adjoint:
plt.plot(
bf2.eHistogram, bf2.peakHistogram, bf2.linePeak, label=bf2.labelPeak
)
plt.legend(loc="lower left")
plt.title("Group flux")
if fName:
plt.savefig(fName)
report.setData(
"Flux Plot {}".format(os.path.split(fName)[1]),
os.path.abspath(fName),
report.FLUX_PLOT,
)
plt.close()
else:
# Never close interactive plots
plt.show()
[docs]def makeHistogram(x, y):
"""
Take a list of x and y values, and return a histogram version.
Good for plotting multigroup flux spectrum or cross sections.
"""
if not len(x) == len(y):
raise ValueError(
"Cannot make a histogram unless the x and y lists are the same size."
+ "len(x) == {} and len(y) == {}".format(len(x), len(y))
)
n = len(x)
xHistogram = np.zeros(2 * n)
yHistogram = np.zeros(2 * n)
for i in range(n):
lower = 2 * i
upper = 2 * i + 1
xHistogram[lower] = x[i - 1]
xHistogram[upper] = x[i]
yHistogram[lower] = y[i]
yHistogram[upper] = y[i]
xHistogram[0] = x[0] / 2.0
return xHistogram, yHistogram
def _makeBlockPinPatches(block, cold):
"""Return lists of block component patches and corresponding data and names (which relates to
material of the component for later plot-coloring/legend) for a single block.
Takes in a block that must have a spatialGrid attached as well as a variable which signifies
whether the dimensions of the components are at hot or cold temps. When cold is set to true, you
would get the BOL cold temp dimensions.
Parameters
----------
block : Block
cold : bool
true for cold temps, hot = false
Return
------
patches : list
list of patches for block components
data : list
list of the materials these components are made of
name : list
list of the names of these components
"""
patches = []
data = []
names = []
cornersUp = False
if isinstance(block.spatialGrid, grids.HexGrid):
largestPitch, comp = block.getPitch(returnComp=True)
cornersUp = block.spatialGrid.cornersUp
elif isinstance(block.spatialGrid, grids.ThetaRZGrid):
raise TypeError(
"This plot function is not currently supported for ThetaRZGrid grids."
)
else:
largestPitch, comp = block.getPitch(returnComp=True)
if block.getPitch()[0] != block.getPitch()[1]:
raise ValueError("Only works for blocks with equal length and width.")
sortedComps = sorted(block, reverse=True)
derivedComponents = block.getComponentsOfShape(DerivedShape)
if len(derivedComponents) == 1:
derivedComponent = derivedComponents[0]
sortedComps.remove(derivedComponent)
cName = derivedComponent.name
if isinstance(derivedComponent.material, custom.Custom):
material = derivedComponent.p.customIsotopicsName
else:
material = derivedComponent.material.name
location = comp.spatialLocator
if isinstance(location, grids.MultiIndexLocation):
location = location[0]
x, y, _ = location.getLocalCoordinates()
if isinstance(comp, Hexagon):
orient = math.pi / 6 if cornersUp else 0
derivedPatch = matplotlib.patches.RegularPolygon(
(x, y), 6, radius=largestPitch / math.sqrt(3), orientation=orient
)
elif isinstance(comp, Square):
derivedPatch = matplotlib.patches.Rectangle(
(x - largestPitch[0] / 2, y - largestPitch[0] / 2),
largestPitch[0],
largestPitch[0],
)
else:
raise TypeError(
f"Shape of the pitch-defining element is not a Square or Hex it is {comp.shape}, "
"cannot plot for this type of block."
)
patches.append(derivedPatch)
data.append(material)
names.append(cName)
for component in sortedComps:
locs = component.spatialLocator
if not isinstance(locs, grids.MultiIndexLocation):
# make a single location a list to iterate.
locs = [locs]
for loc in locs:
x, y, _ = loc.getLocalCoordinates()
# goes through each location in stack order
blockPatches = _makeComponentPatch(component, (x, y), cold, cornersUp)
for element in blockPatches:
patches.append(element)
if isinstance(component.material, custom.Custom):
material = component.p.customIsotopicsName
else:
material = component.material.name
data.append(material)
names.append(component.name)
return patches, data, names
def _makeComponentPatch(component, position, cold, cornersUp=False):
"""Makes a component shaped patch to later be used for making block diagrams.
Parameters
----------
component: a component of a block
position: tuple
(x, y) position
cold: bool
True if looking for dimension at cold temps
cornersUp: bool, optional
If this is a HexBlock, is it corners-up or flats-up?
Return
------
blockPatch: list
A list of Patch objects that together represent a component in the diagram.
Notes
-----
Currently accepts components of shape Circle, Helix, Hexagon, or Square
"""
x = position[0]
y = position[1]
if isinstance(component, Helix):
blockPatch = matplotlib.patches.Wedge(
(
x
+ component.getDimension("helixDiameter", cold=cold)
/ 2
* math.cos(math.pi / 6),
y
+ component.getDimension("helixDiameter", cold=cold)
/ 2
* math.sin(math.pi / 6),
),
component.getDimension("od", cold=cold) / 2,
0,
360,
width=(component.getDimension("od", cold=cold) / 2)
- (component.getDimension("id", cold=cold) / 2),
)
elif isinstance(component, Circle):
blockPatch = matplotlib.patches.Wedge(
(x, y),
component.getDimension("od", cold=cold) / 2,
0,
360,
width=(component.getDimension("od", cold=cold) / 2)
- (component.getDimension("id", cold=cold) / 2),
)
elif isinstance(component, Hexagon):
angle = 0 if cornersUp else 30
outerPoints = np.array(
hexagon.corners(angle) * component.getDimension("op", cold=cold)
)
blockPatch = []
if component.getDimension("ip", cold=cold) != 0:
# a hexagonal ring
innerPoints = np.array(
hexagon.corners(angle) * component.getDimension("ip", cold=cold)
)
for n in range(6):
corners = [
innerPoints[n],
innerPoints[(n + 1) % 6],
outerPoints[(n + 1) % 6],
outerPoints[n],
]
patch = matplotlib.patches.Polygon(corners, fill=True)
blockPatch.append(patch)
else:
# a simple hexagon
for n in range(6):
corners = [
outerPoints[(n + 1) % 6],
outerPoints[n],
]
patch = matplotlib.patches.Polygon(corners, fill=True)
blockPatch.append(patch)
elif isinstance(component, Rectangle):
if component.getDimension("widthInner", cold=cold) != 0:
innerPoints = np.array(
[
[
x + component.getDimension("widthInner", cold=cold) / 2,
y + component.getDimension("lengthInner", cold=cold) / 2,
],
[
x + component.getDimension("widthInner", cold=cold) / 2,
y - component.getDimension("lengthInner", cold=cold) / 2,
],
[
x - component.getDimension("widthInner", cold=cold) / 2,
y - component.getDimension("lengthInner", cold=cold) / 2,
],
[
x - component.getDimension("widthInner", cold=cold) / 2,
y + component.getDimension("lengthInner", cold=cold) / 2,
],
]
)
outerPoints = np.array(
[
[
x + component.getDimension("widthOuter", cold=cold) / 2,
y + component.getDimension("lengthOuter", cold=cold) / 2,
],
[
x + component.getDimension("widthOuter", cold=cold) / 2,
y - component.getDimension("lengthOuter", cold=cold) / 2,
],
[
x - component.getDimension("widthOuter", cold=cold) / 2,
y - component.getDimension("lengthOuter", cold=cold) / 2,
],
[
x - component.getDimension("widthOuter", cold=cold) / 2,
y + component.getDimension("lengthOuter", cold=cold) / 2,
],
]
)
blockPatch = []
for n in range(4):
corners = [
innerPoints[n],
innerPoints[(n + 1) % 4],
outerPoints[(n + 1) % 4],
outerPoints[n],
]
patch = matplotlib.patches.Polygon(corners, fill=True)
blockPatch.append(patch)
else:
# Just make it a rectangle
blockPatch = matplotlib.patches.Rectangle(
(
x - component.getDimension("widthOuter", cold=cold) / 2,
y - component.getDimension("lengthOuter", cold=cold) / 2,
),
component.getDimension("widthOuter", cold=cold),
component.getDimension("lengthOuter", cold=cold),
)
if isinstance(blockPatch, list):
return blockPatch
return [blockPatch]
[docs]def plotBlockDiagram(
block, fName, cold, cmapName="RdYlBu", materialList=None, fileFormat="svg"
):
"""Given a Block with a spatial Grid, plot the diagram of it with all of its components (wire,
duct, coolant, etc).
Parameters
----------
block : Block
fName : str
Name of the file to save to
cold : bool
True is for cold temps, False is hot
cmapName : str
name of a colorMap to use for block colors
materialList : list
A list of material names across all blocks to be plotted
so that same material on all diagrams will have the same color
fileFormat : str
The format to save the picture as, e.g. svg, png, jpg, etc.
"""
_, ax = plt.subplots(figsize=(20, 20), dpi=200)
if block.spatialGrid is None:
return None
# building a list of materials
if materialList is None:
materialList = []
for component in block:
if isinstance(component.material, custom.Custom):
materialName = component.p.customIsotopicsName
else:
materialName = component.material.name
if materialName not in materialList:
materialList.append(materialName)
materialMap = {material: ai for ai, material in enumerate(np.unique(materialList))}
allColors = np.array(list(materialMap.values()))
# build the geometric shapes on the plot
patches, data, _ = _makeBlockPinPatches(block, cold)
collection = PatchCollection(patches, cmap=cmapName, alpha=1.0)
ourColors = np.array([materialMap[materialName] for materialName in data])
collection.set_array(ourColors)
ax.add_collection(collection)
collection.norm.autoscale(allColors)
# set up plot axis, labels and legends
legendMap = [
(materialMap[materialName], "", "{}".format(materialName))
for materialName in np.unique(data)
]
legend = _createLegend(legendMap, collection, size=50, shape=Rectangle)
pltKwargs = {"bbox_extra_artists": (legend,), "bbox_inches": "tight"}
ax.set_xticks([])
ax.set_yticks([])
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.margins(0)
plt.savefig(fName, format=fileFormat, **pltKwargs)
plt.close()
return os.path.abspath(fName)
[docs]def plotNucXs(
isotxs, nucNames, xsNames, fName=None, label=None, noShow=False, title=None
):
"""
Generates a XS plot for a nuclide on the ISOTXS library.
Parameters
----------
isotxs : IsotxsLibrary
A collection of cross sections (XS) for both neutron and gamma reactions.
nucNames : str or list
The nuclides to plot
xsNames : str or list
the XS to plot e.g. n,g, n,f, nalph, etc. see xsCollections for actual names.
fName : str, optional
if fName is given, the file will be written rather than plotting to screen
label : str, optional
is an optional label for image legends, useful in ipython sessions.
noShow : bool, optional
Won't finalize plot. Useful for using this to make custom plots.
Examples
--------
>>> l = ISOTXS()
>>> plotNucXs(l, 'U238NA','fission')
>>> # Plot n,g for all xenon and krypton isotopes
>>> f = lambda name: 'XE' in name or 'KR' in name
>>> plotNucXs(l, sorted(filter(f,l.nuclides.keys())),itertools.repeat('nGamma'))
See Also
--------
armi.nucDirectory.nuclide.plotScatterMatrix
"""
# convert all input to lists
if isinstance(nucNames, str):
nucNames = [nucNames]
if isinstance(xsNames, str):
xsNames = [xsNames]
for nucName, xsName in zip(nucNames, xsNames):
nuc = isotxs[nucName]
thisLabel = label or "{0} {1}".format(nucName, xsName)
x = isotxs.neutronEnergyUpperBounds / 1e6
y = nuc.micros[xsName]
plt.plot(x, y, "-", label=thisLabel, drawstyle="steps-post")
ax = plt.gca()
ax.set_xscale("log")
ax.set_yscale("log")
plt.grid(color="0.70")
plt.title(title or " microscopic XS from {0}".format(isotxs))
plt.xlabel("Energy (MeV)")
plt.ylabel("microscopic XS (barns)")
plt.legend()
if fName:
plt.savefig(fName)
plt.close()
elif not noShow:
plt.show()