Source code for armi.utils.reportPlotting

# Copyright 2019 TerraPower, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Plotting Utils specific to reports.

This module makes heavy use of matplotlib. Beware that plots generated with matplotlib
may not free their memory, even after the plot is closed, and excessive use of
plotting functions may gobble up all of your machine's memory.

Therefore, you should use these plotting tools judiciously. It is not advisable to,
for instance, plot some sequence of objects in a loop at every time node. If you start
to see your memory usage grow inexplicably, you should question any plots that you are
generating.
"""

import itertools
import math
import os

from matplotlib import cm
from matplotlib import colors as mpltcolors
import matplotlib.path
import matplotlib.projections.polar
import matplotlib.pyplot as plt
import matplotlib.spines
import numpy

from armi import runLog
from armi import settings
from armi.bookkeeping import report
from armi.physics.neutronics import crossSectionGroupManager
from armi.reactor.flags import Flags


[docs]def plotReactorPerformance(reactor, dbi, buGroups, extension=None, history=None): """ Generates a set of plots useful in reactor analysis given a populated reactor. Parameters ---------- reactor : armi.reactor.reactors.Reactor The reactor to plot dbi : armi.bookkeeping.db.DatabaseInterface The DatabaseInterface object from which to pull historical data buGroups : list of float The burnup groups in the problem extension : str, optional The file extention for saving plots history: armi.bookkeeping.historyTracker.HistoryTrackerInterface object The history tracker interface """ try: data = dbi.getHistory( reactor, params=["cycle", "time", "eFeedMT", "eSWU", "eFuelCycleCost"] ) data.update( dbi.getHistory( reactor.core, params=[ "keff", "keffUnc", "maxPD", "maxBuI", "maxBuF", "maxDPA", "numMoves", ], ) ) except Exception as ee: runLog.warning( "Cannot plot rxPerformance without the data model present in the database.\nError: {}".format( ee ) ) return # data is a dict of OrderedDict: { <paramName> : { (<cycle>, <node>) : value } } scalars = {key: list(timeStepDict.values()) for key, timeStepDict in data.items()} runLog.info("scalars for plotting {}".format(scalars)) valueVsTime( reactor.name, scalars["time"], scalars["maxPD"], "maxPD", "Max Areal PD (MW/m^2)", "Max Areal PD vs. time", 0.0, extension=extension, ) keffVsTime( reactor.name, scalars["time"], scalars["keff"], scalars["keffUnc"], ymin=1.0, extension=extension, ) buVsTime(reactor.name, scalars, extension=extension) xsHistoryVsTime(reactor.name, history, buGroups, extension=extension) movesVsCycle(reactor.name, scalars, extension=extension)
# --------------------------
[docs]def valueVsTime(name, x, y, key, yaxis, title, ymin=None, extension=None): r""" Plots a value vs. time with a standard graph format. Parameters ---------- name : str Reactor.name x : iterable The x-axis values (the abscissa) y : iterable The y-axis values (the ordinate) key : str A key word to add the item to the report interface yaxis : str The y axis label title : str the plot title ymin : str, optional The minimum y-axis value. If any ordinates are less than this value, it will be ignored. extension : str, optional The file extention for saving the figure """ extension = extension or settings.Settings()["outputFileExtension"] plt.figure() plt.plot(x, y, ".-") plt.xlabel("Time (yr)") plt.ylabel(yaxis) plt.grid(color="0.70") plt.title(title + " for {0}".format(name)) if ymin is not None and all([yi > ymin for yi in y]): # set ymin all values are greater than it and it exists. ax = plt.gca() ax.set_ylim(bottom=ymin) figName = name + "." + key + "." + extension plt.savefig(figName) plt.close(1) report.setData("PlotTime", os.path.abspath(figName), report.TIME_PLOT)
[docs]def keffVsTime(name, time, keff, keffUnc=None, ymin=None, extension=None): r""" Plots core keff vs. time. Parameters ---------- name : str reactor.name time : list Time in years keff : list Keff in years keffUnc : list, optional Uncontrolled keff or None (will be plotted as secondary series) ymin : float, optional Minimum y-axis value to target. extension : str, optional The file extention for saving the figure """ extension = extension or settings.Settings()["outputFileExtension"] plt.figure() if any(keffUnc): label1 = "Controlled k-eff" label2 = "Uncontrolled k-eff" else: label1 = None plt.plot(time, keff, ".-", label=label1) if any(keffUnc): plt.plot(time, keffUnc, ".-", label=label2) plt.legend() plt.xlabel("Time (yr)") plt.ylabel("k-eff") plt.grid(color="0.70") plt.title("k-eff vs. time" + " for {0}".format(name)) if ymin is not None and all([yi > ymin for yi in keff]): # set ymin all values are greater than it and it exists. ax = plt.gca() ax.set_ylim(bottom=ymin) figName = name + ".keff." + extension plt.savefig(figName) plt.close(1) report.setData("K-Eff", os.path.abspath(figName), report.KEFF_PLOT)
[docs]def buVsTime(name, scalars, extension=None): r""" produces a burnup and DPA vs. time plot for this case. Will add a second axis containing DPA if the scalar column maxDPA exists. Parameters ---------- name : str reactor.name scalars : dict Scalar values for this case extension : str, optional The file extention for saving the figure """ extension = extension or settings.Settings()["outputFileExtension"] plt.figure() try: plt.plot(scalars["time"], scalars["maxBuI"], ".-", label="Driver") except ValueError: runLog.warning( "Incompatible axis length in burnup plot. Time has {0}, bu has {1}. Skipping" "".format(len(scalars["time"]), len(scalars["maxBuI"])) ) plt.close(1) return plt.plot(scalars["time"], scalars["maxBuF"], ".-", label="Feed") plt.xlabel("Time (yr)") plt.ylabel("BU (%FIMA)") plt.grid(color="0.70") plt.legend(loc="lower left") title = "Maximum burnup" if scalars["maxDPA"]: plt.twinx() plt.plot(scalars["time"], scalars["maxDPA"], "r--", label="dpa") plt.legend(loc="lower right") plt.ylabel("dpa") title += " and DPA" title += " for " + name plt.title(title) plt.legend(loc="lower right") figName = name + ".bu." + extension plt.savefig(figName) plt.close(1) report.setData("Burnup Plot", os.path.abspath(figName), report.BURNUP_PLOT)
[docs]def xsHistoryVsTime(name, history, buGroups, extension=None): r""" Plot cross section history vs. time. Parameters ---------- name : str reactor.name history : armi.bookkeeping.historyTracker.HistoryTrackerInterface object The history interface. buGroups : list of float The burnup groups in the problem extension : str, optional The file extention for saving the figure """ extension = extension or settings.Settings()["outputFileExtension"] if not history.xsHistory: return colors = itertools.cycle(["b", "g", "r", "c", "m", "y", "k"]) plt.figure() maxbu = 0.0 for typeNum, dataList in history.xsHistory.items(): times = [d[0] for d in dataList] burnups = [d[1] for d in dataList] maxb = max(burnups) if maxb > maxbu: maxbu = maxb xsType = crossSectionGroupManager.getXSTypeLabelFromNumber(typeNum) color = next(colors) plt.plot(times, burnups, color + ".", label="Type {0} XS".format(xsType)) for upperBu in [0.0] + buGroups: # draw a hline at the limits of each burnup group plt.axhline(y=upperBu) plt.legend() plt.title("Block burnups used to generate XS for {0}".format(name)) plt.xlabel("Time (years)") plt.ylabel("Burnup (% FIMA)") plt.ylim(0, maxbu * 1.05) figName = name + ".bugroups." + extension plt.savefig(figName) plt.close(1) report.setData("Xs Plot", os.path.abspath(figName), report.XS_PLOT)
[docs]def movesVsCycle(name, scalars, extension=None): r""" make a bar chart showing the number of moves per cycle in the full core. A move is defined as an assembly being picked up, moved, and put down. So if two assemblies are swapped, that is 2 moves. Note that it does not count temporary storage for such swaps. This is an approximation because in a chain of moves, only one out of the chain would have to be temporarily stored. So as the chains get longer, this approximation gets more accurate. Parameters ---------- name : str reactor.name extension : str, optional The file extention for saving the figure See Also -------- FuelHandler.outage : sets the number of moves in each cycle """ extension = extension or settings.Settings()["outputFileExtension"] cycles = [] yvals = [] for moves, cycle in zip(scalars["numMoves"], scalars["cycle"]): if moves is None: moves = 0.0 if cycle not in cycles: # only one move per cycle # use the cycles scalar val in case burnSteps is dynamic cycles.append(cycle) yvals.append(moves) plt.figure(figsize=(12, 6)) # make it wide and short plt.bar(cycles, yvals, align="center") if len(cycles) > 1: plt.xticks(cycles) plt.grid(color="0.70") plt.xlabel("Cycle") plt.ylabel("Number of Moves") plt.title("Fuel management rate for " + name) figName = name + ".moves." + extension plt.savefig(figName) plt.close(1) report.setData("Moves Plot", os.path.abspath(figName), report.MOVES_PLOT)
[docs]def plotCoreOverviewRadar(reactors, reactorNames=None): """ Plot key features of a set of reactors on radar/spider plots. Useful for comparing reactors to one another. """ runLog.info("Plotting reactor comparison.") fig = plt.figure(figsize=(17, 9)) fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05) colors = itertools.cycle(["b", "r", "g"]) axes = {} thetas = {} scrapers = [ _getNeutronicVals, _getMechanicalVals, _getFuelVals, _getTHVals, _getEconVals, _getPhysicalVals, ] firstReactorVals = {} # for normalization numRows, numCols = 2, (len(scrapers) + 1) // 2 for r, color in zip(reactors, colors): for si, scraper in enumerate(scrapers): physicsName, physicsLabels, physicsVals = scraper(r) runLog.info("{}".format(physicsName)) runLog.info( "\n".join( [ "{:10s} {}".format(label, val) for label, val in zip(physicsLabels, physicsVals) ] ) ) physicsVals = numpy.array(physicsVals) theta = thetas.get(physicsName) if theta is None: # first time through. Build the radar, store the axis theta = _radarFactory(len(physicsLabels), frame="polygon") thetas[physicsName] = theta firstReactorVals[physicsName] = physicsVals ax = fig.add_subplot(numRows, numCols, si + 1, projection="radar") axes[physicsName] = ax ax.set_title( physicsName, weight="bold", size="medium", position=(0.5, 1.1), horizontalalignment="center", verticalalignment="center", ) ax.set_var_labels(physicsLabels) plt.rgrids([0.2, 0.4, 0.6, 0.8]) # radial grid lines else: ax = axes[physicsName] with numpy.errstate(divide="ignore", invalid="ignore"): vals = ( physicsVals / firstReactorVals[physicsName] ) # normalize to first reactor b/c values differ by a lot. vals[numpy.isnan(vals)] = 0.2 ax.plot(theta, vals, color=color) ax.fill(theta, vals, facecolor=color, alpha=0.25) if reactorNames: plt.subplot(numRows, numCols, 1) # legend on top-left plot legend = plt.legend(reactorNames, loc=(0.9, 0.95), labelspacing=0.1) plt.setp(legend.get_texts(), fontsize="small") plt.figtext( 0.5, 0.965, "Comparison", ha="center", color="black", weight="bold", size="large", ) plt.savefig("reactor_comparison.png") plt.close()
def _getNeutronicVals(r): labels, vals = list( zip( *[ ("Rx. Swing", r.core.p.rxSwing), ("Fast Flux Fr.", r.core.p.fastFluxFrAvg), ("Leakage", r.core.p.leakageFracTotal), ("Beta", r.core.p.beta), ("Peak flux", r.core.p.maxFlux), ] ) ) return "Neutronics", labels, vals def _getMechanicalVals(r): labels, vals = list( zip( *[ ("Hold down", 1.0), ("Distortion", 3.0), ] ) ) return "Mechanical", labels, vals def _getPhysicalVals(r): avgHeight = 0.0 fuelA = r.core.getAssemblies(Flags.FUEL) avgHeight = sum( b.getHeight() for a in fuelA for b in a.getBlocks(Flags.FUEL) ) / len(fuelA) radius = r.core.getCoreRadius() labels, vals = list( zip( *[ ("Fuel height", avgHeight), ("Fuel assems", len(fuelA)), ("Assem weight", r.core.getFirstAssembly(Flags.FUEL).getMass()), ("Core radius", radius), ("Core aspect ratio", (2 * radius) / avgHeight), # width/height ("Fissile mass", r.core.getFissileMass()), ] ) ) return "Dimensions", labels, vals def _getFuelVals(r): tOverD = 0.0 numClad = 0.0 for b in r.core.getBlocks(Flags.FUEL): clad = b.getComponent(Flags.CLAD) if clad: cladOD = clad.getDimension("od") cladID = clad.getDimension("id") tOverD += (cladOD - cladID) / cladOD numClad += 1 tOverD /= numClad data = [ ("Max FCCI", r.core.p.maxcladFCCI), ("Max BU", r.core.p.maxpercentBu), ( "Smear dens.", r.core.calcAvgParam("smearDensity", generationNum=2, typeSpec=Flags.FUEL), ), ("Clad T/D", tOverD), ("dpa", r.core.p.maxdetailedDpaPeak), ] labels, vals = list(zip(*data)) return "Fuel Perf.", labels, vals def _getTHVals(r): labels, vals = zip( *[ ("Max PD", r.core.p.maxPD), ("Outlet", r.core.p.THoutletTempIdeal), ("Pump Pressure", r.core.p.THmaxDeltaPPump), ("Mass flow", r.core.getMaxParam("THmassFlowRate")), ("Th. striping", r.core.getMaxParam("THlocalDToutFuel")), ("Fuel temp", r.core.getMaxBlockParam("THhotChannelFuelCenterlineT")), ] ) return "T/H", labels, vals def _getEconVals(r): labels, vals = zip( *[("Feed U", r.p.eFeedMT), ("SWU", r.p.eSWU), ("LCOE", r.p.lcoe)] ) return "Economics", labels, vals def _radarFactory(numVars, frame="circle"): """Create a radar chart with `numVars` axes. This function creates a RadarAxes projection and registers it. Raises ------ ValueError If value of the frame is unknown. Parameters ---------- numVars : int Number of variables for radar chart. frame : {'circle' | 'polygon'} Shape of frame surrounding axes. """ # calculate evenly-spaced axis angles # rotate theta such that the first axis is at the top # keep within 0 to 2pi range though. theta = ( numpy.linspace(0, 2 * numpy.pi, numVars, endpoint=False) + numpy.pi / 2 ) % (2.0 * numpy.pi) def drawPolyPatch(): verts = _unitPolyVerts(theta) return plt.Polygon(verts, closed=True, edgecolor="k") def drawCirclePatch(): # unit circle centered on (0.5, 0.5) return plt.Circle((0.5, 0.5), 0.5) def close_line(line): """Closes the input line.""" x, y = line.get_data() if x[0] != x[-1]: x = numpy.concatenate((x, [x[0]])) y = numpy.concatenate((y, [y[0]])) line.set_data(x, y) patchDict = {"polygon": drawPolyPatch, "circle": drawCirclePatch} if frame not in patchDict: raise ValueError("unknown value for `frame`: %s" % frame) class _RadarAxes(matplotlib.projections.polar.PolarAxes): """ Radar projection. Note different PEP8 naming convension to comply with parent class """ name = "radar" # use 1 line segment to connect specified points RESOLUTION = 1 # define draw_frame method draw_patch = staticmethod(patchDict[frame]) def fill(self, *args, **kwargs): """Override fill so that line is closed by default.""" closed = kwargs.pop("closed", True) return super(_RadarAxes, self).fill(closed=closed, *args, **kwargs) def plot(self, *args, **kwargs): """Override plot so that line is closed by default.""" lines = super(_RadarAxes, self).plot(*args, **kwargs) for line in lines: close_line(line) def set_var_labels(self, labels): self.set_thetagrids(numpy.degrees(theta), labels) def _gen_axes_patch(self): return self.draw_patch() def _gen_axes_spines(self): if frame == "circle": return matplotlib.projections.polar.PolarAxes._gen_axes_spines(self) # The following is a hack to get the spines (i.e. the axes frame) # to draw correctly for a polygon frame. # spine_type must be 'left', 'right', 'top', 'bottom', or `circle`. spine_type = "circle" verts = _unitPolyVerts(theta) # close off polygon by repeating first vertex verts.append(verts[0]) path = matplotlib.path.Path(verts) spine = matplotlib.spines.Spine(self, spine_type, path) spine.set_transform(self.transAxes) return {"polar": spine} matplotlib.projections.register_projection(_RadarAxes) return theta def _unitPolyVerts(theta): """Return vertices of polygon for subplot axes. This polygon is circumscribed by a unit circle centered at (0.5, 0.5) """ x0 = y0 = r = 0.5 verts = list(zip(r * numpy.cos(theta) + x0, r * numpy.sin(theta) + y0)) return verts
[docs]def createPlotMetaData( title, xLabel, yLabel, xMajorTicks=None, yMajorTicks=None, legendLabels=None ): """ Create plot metadata (title, labels, ticks). Parameters ---------- title : str Plot title xLabel : str x-axis label yLabel : str y-axis label xMajorTicks : list of float List of axial position at which to insert major ticks yMajorTicks : list of float List of axial position at which to insert major ticks legendsLabels : list of str Labels to used in the plot legend Returns ------- metadata : dict Dictionary with all plot metadata information """ metadata = {} metadata["title"] = title metadata["xlabel"] = xLabel metadata["ylabel"] = yLabel metadata["xMajorTicks"] = xMajorTicks metadata["yMajorTicks"] = yMajorTicks metadata["legendLabels"] = legendLabels return metadata
[docs]def plotAxialProfile(zVals, dataVals, fName, metadata, nPlot=1, yLog=False): """ Plot the axial profile of quantity zVals. Parameters ---------- zVals: list of float Axial position of the quantity to be plotted dataVals: list of float Axial quantity to be plotted fName: str The file name for the plot image file. metadata : bool Metadata (title, labels, legends, ticks) nPlot: int Number of plots to be generated yLog: bool Boolean flag indicating that y-axis is to be plotted on a log scale. """ plt.figure(figsize=(15, 10)) plt.xlabel(metadata["xlabel"]) plt.ylabel(metadata["ylabel"]) plt.title(metadata["title"]) if metadata["legendLabels"]: plt.legend(metadata["legendLabels"], loc=1, fontsize="small") ax = plt.gca() if yLog: # plot the axial profiles on a log scale dataVals = numpy.log10(abs(dataVals)) if nPlot > 1: colormap = cm.get_cmap("jet") norm = mpltcolors.Normalize(0, nPlot - 1) # alternate between line styles to help distinguish neighboring groups (close on the color map) lineTypes = ["", ":", "--", "-."] nLineTypes = len(lineTypes) for n in range(nPlot): # reverse order for color map, so high E is red and low E is blue n_ = nPlot - n - 1 color = colormap(norm(n_)) lineTypeIndex = int(math.fmod(n, nLineTypes)) plt.plot(zVals, dataVals[:, n], lineTypes[lineTypeIndex], color=color) else: plt.plot(zVals, dataVals) ax.autoscale_view() if metadata["xMajorTicks"]: ax.set_xticks(metadata["xMajorTicks"]) ax.set_xticklabels([str(int(x)) for x in metadata["xMajorTicks"]], fontsize=12) if metadata["yMajorTicks"]: ax.set_xticks(metadata["yMajorTicks"]) ax.set_xticklabels([str(int(x)) for x in metadata["yMajorTicks"]], fontsize=12) ax.xaxis.grid() ax.yaxis.grid() plt.savefig(fName) plt.close()