armi.materials.uraniumOxide module

Uranium Oxide properties.

UO2 is a common ceramic nuclear fuel form. It’s properties are well known. This mostly uses data from 1.

1(1,2,3,4,5,6)

Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation. S.G. Popov, et.al. Oak Ridge National Laboratory. ORNL/TM-2000/351 https://rsicc.ornl.gov/fmdp/tm2000-351.pdf

class armi.materials.uraniumOxide.HeatCapacityConstants(c1, c2, c3, theta, Ea)

Bases: tuple

Create new instance of HeatCapacityConstants(c1, c2, c3, theta, Ea)

Ea

Alias for field number 4

c1

Alias for field number 0

c2

Alias for field number 1

c3

Alias for field number 2

theta

Alias for field number 3

class armi.materials.uraniumOxide.UraniumOxide[source]

Bases: armi.materials.material.FuelMaterial, armi.materials.material.SimpleSolid

name = 'UraniumOxide'

String identifying the material

enrichedNuclide = 'U235'

Name of enriched nuclide to be interpreted by enrichment modification methods

REFERENCE_TEMPERATURE = 27
heatCapacityConstants = HeatCapacityConstants(c1=302.27, c2=0.008463, c3=87410000.0, theta=548.68, Ea=18531.7)
propertyUnits = {'heat capacity': 'J/mol-K'}
propertyValidTemperature = {'density': ((300, 3100), 'K'), 'heat capacity': ((298.15, 3120), 'K'), 'linear expansion': ((273, 3120), 'K'), 'linear expansion percent': ((273, 3123.0), 'K'), 'thermal conductivity': ((300, 3000), 'K')}

Dictionary of valid temperatures over which the property models are valid in the format ‘Property Name’: ((Temperature_Lower_Limit, Temperature_Upper_Limit), Temperature_Units)

references = {'heat capacity': 'ORNL/TM-2000/351', 'linear expansion': 'Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation. S.G. Popov, et.al. Oak Ridge National Laboratory. ORNL/TM-2000/351', 'thermal conductivity': 'Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. S. Motoyama. Physical Review B, Volume 60, Number 1, July 1999'}

citation}

Type

The literature references {property

thermalScatteringLaws = (<ThermalScatteringLaw - Compound: UO2, Nuclides: frozenset({<NaturalNuclideBase U:  Z:92, W:2.380289e+02, Label:U>}), <ThermalScatteringLaw - Compound: UO2, Nuclides: frozenset({<NaturalNuclideBase O:  Z:8, W:1.599930e+01, Label:O>}))

A tuple of ThermalScattering instances with information about thermal scattering.

thermalConductivityTableK = [300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000]
thermalConductivityTable = [7.991, 4.864, 3.64, 2.768, 2.567, 2.294, 2.073, 1.891, 1.847, 1.718]
applyInputParams(U235_wt_frac: Optional[float] = None, TD_frac: Optional[float] = None, *args, **kwargs) None[source]
setDefaultMassFracs() None[source]

UO2 mass fractions. Using Natural Uranium without U234.

meltingPoint()[source]

Melting point in K.

From 1.

density(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Density in (g/cc).

Polynomial line fit to data from 1 on page 11.

heatCapacity(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Heat capacity in J/kg-K.

From Section 4.3 in 1

linearExpansion(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Linear expansion coefficient.

Curve fit from data in 1

linearExpansionPercent(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Return dL/L.

From Section 3.3 of 1

thermalConductivity(Tk: Optional[float] = None, Tc: Optional[float] = None) float[source]

Thermal conductivity.

Ref: Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation. S. Motoyama. Physical Review B, Volume 60, Number 1, July 1999

class armi.materials.uraniumOxide.UO2[source]

Bases: armi.materials.uraniumOxide.UraniumOxide

Another name for UraniumOxide.