Source code for armi.reactor.converters.axialExpansionChanger

# Copyright 2019 TerraPower, LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""enable component-wise axial expansion for assemblies and/or a reactor"""

from statistics import mean
from numpy import array
from armi import runLog
from armi.materials import material
from armi.reactor.flags import Flags
from armi.reactor.components import UnshapedComponent
from armi.utils import densityTools

TARGET_FLAGS_IN_PREFERRED_ORDER = [
    Flags.FUEL,
    Flags.CONTROL,
    Flags.POISON,
    Flags.SHIELD,
    Flags.SLUG,
]


[docs]class AxialExpansionChanger: """ Axially expand or contract assemblies or an entire core. Attributes ---------- linked : :py:class:`AssemblyAxialLinkage` object. establishes object containing axial linkage information expansionData : :py:class:`ExpansionData <armi.reactor.converters.axialExpansionChanger.ExpansionData>` object. establishes object to store and access relevant expansion data Notes ----- - Is designed to work with general, vertically oriented, pin-type assembly designs. It is not set up to account for any other assembly type. - Useful for fuel performance, thermal expansion, reactivity coefficients, etc. """ def __init__(self, detailedAxialExpansion: bool = False): """ Build an axial expansion converter. Parameters ---------- detailedAxialExpansion : bool, optional A boolean to indicate whether or not detailedAxialExpansion is to be utilized. """ self._detailedAxialExpansion = detailedAxialExpansion self.linked = None self.expansionData = None
[docs] def performPrescribedAxialExpansion( self, a, componentLst: list, percents: list, setFuel=True ): """Perform axial expansion of an assembly given prescribed expansion percentages Parameters ---------- a : :py:class:`Assembly <armi.reactor.assemblies.Assembly>` object. ARMI assembly to be changed componentList : :py:class:`Component <armi.reactor.components.component.Component>`, list list of :py:class:`Component <armi.reactor.components.component.Component>` objects to be expanded percents : float, list list of expansion percentages for each component listed in componentList setFuel : boolean, optional Boolean to determine whether or not fuel blocks should have their target components set This is useful when target components within a fuel block need to be determined on-the-fly. Notes ----- - percents may be positive (expansion) or negative (contraction) """ self.setAssembly(a, setFuel) self.expansionData.setExpansionFactors(componentLst, percents) self.axiallyExpandAssembly(thermal=False)
[docs] def performThermalAxialExpansion( self, a, tempGrid: list, tempField: list, setFuel: bool = True, updateNDensForRadialExp: bool = True, ): """Perform thermal expansion for an assembly given an axial temperature grid and field Parameters ---------- a : :py:class:`Assembly <armi.reactor.assemblies.Assembly>` object. ARMI assembly to be changed tempGrid : float, list Axial temperature grid (in cm) (i.e., physical locations where temp is stored) tempField : float, list Temperature values (in C) along grid setFuel : boolean, optional Boolean to determine whether or not fuel blocks should have their target components set This is useful when target components within a fuel block need to be determined on-the-fly. updateNDensForRadialExp: optional, bool boolean to determine whether or not the component number densities should be updated to account for radial expansion/contraction Notes ----- - Setting updateNDensForRadialExp to False isolates the number density changes due to the temp change to just the axial dim. This is useful for testing. However, in practical use updateNDensForRadialExp should be set to True to capture radial expansion/contraction effects associated with updating the component temperature. """ self.setAssembly(a, setFuel) self.expansionData.updateComponentTempsBy1DTempField( tempGrid, tempField, updateNDensForRadialExp ) self.expansionData.computeThermalExpansionFactors() self.axiallyExpandAssembly(thermal=True)
[docs] def reset(self): self.linked = None self.expansionData = None
[docs] def setAssembly(self, a, setFuel=True): """set the armi assembly to be changed and init expansion data class for assembly Parameters ---------- a : :py:class:`Assembly <armi.reactor.assemblies.Assembly>` object. ARMI assembly to be changed setFuel : boolean, optional Boolean to determine whether or not fuel blocks should have their target components set This is useful when target components within a fuel block need to be determined on-the-fly. """ self.linked = AssemblyAxialLinkage(a) self.expansionData = ExpansionData(a, setFuel) self._isTopDummyBlockPresent()
[docs] def applyColdHeightMassIncrease(self): """ Increase component mass because they are declared at cold dims Notes ----- A cold 1 cm tall component will have more mass that a component with the same mass/length as a component with a hot height of 1 cm. This should be called when the setting `inputHeightsConsideredHot` is used. This adjusts the expansion factor applied during applyMaterialMassFracsToNumberDensities. """ for c in self.linked.a.getComponents(): axialExpansionFactor = 1.0 + c.material.linearExpansionFactor( c.temperatureInC, c.inputTemperatureInC ) c.changeNDensByFactor(axialExpansionFactor)
def _isTopDummyBlockPresent(self): """determines if top most block of assembly is a dummy block Notes ----- - If true, then axial expansion will be physical for all blocks. - If false, the top most block in the assembly is artificially chopped to preserve the assembly height. A runLog.Warning also issued. """ blkLst = self.linked.a.getBlocks() if not blkLst[-1].hasFlags(Flags.DUMMY): runLog.warning( "No dummy block present at the top of {0}! " "Top most block will be artificially chopped " "to preserve assembly height".format(self.linked.a) ) if self._detailedAxialExpansion: msg = "Cannot run detailedAxialExpansion without a dummy block at the top of the assembly!" runLog.error(msg) raise RuntimeError(msg)
[docs] def axiallyExpandAssembly(self, thermal: bool = False): """Utilizes assembly linkage to do axial expansion Parameters ---------- thermal : bool, optional boolean to determine whether or not expansion is thermal or non-thermal driven Notes ----- The "thermal" parameter plays a role as thermal expansion is relative to the BOL heights where non-thermal is relative to the most recent height. """ mesh = [0.0] numOfBlocks = self.linked.a.countBlocksWithFlags() runLog.debug( "Printing component expansion information (growth percentage and 'target component')" "for each block in assembly {0}.".format(self.linked.a) ) for ib, b in enumerate(self.linked.a): runLog.debug(msg=" Block {0}".format(b)) if thermal: blockHeight = b.p.heightBOL else: blockHeight = b.p.height # set bottom of block equal to top of block below it # if ib == 0, leave block bottom = 0.0 if ib > 0: b.p.zbottom = self.linked.linkedBlocks[b][0].p.ztop isDummyBlock = ib == (numOfBlocks - 1) if not isDummyBlock: for c in _getSolidComponents(b): growFrac = self.expansionData.getExpansionFactor(c) runLog.debug( msg=" Component {0}, growFrac = {1:.4e}".format( c, growFrac ) ) if thermal and c in self.expansionData.componentReferenceHeight: blockHeight = self.expansionData.componentReferenceHeight[c] if growFrac >= 0.0: c.height = (1.0 + growFrac) * blockHeight else: c.height = (1.0 / (1.0 - growFrac)) * blockHeight # align linked components if ib == 0: c.zbottom = 0.0 else: if self.linked.linkedComponents[c][0] is not None: # use linked components below c.zbottom = self.linked.linkedComponents[c][0].ztop else: # otherwise there aren't any linked components # so just set the bottom of the component to # the top of the block below it c.zbottom = self.linked.linkedBlocks[b][0].p.ztop c.ztop = c.zbottom + c.height # redistribute block boundaries if on the target component if self.expansionData.isTargetComponent(c): if b.axialExpTargetComponent is None: runLog.debug( " Component {0} is target component (inferred)".format( c ) ) else: runLog.debug( " Component {0} is target component (blueprints defined)".format( c ) ) b.p.ztop = c.ztop # see also b.setHeight() # - the above not chosen due to call to calculateZCoords oldComponentVolumes = [c.getVolume() for c in b] oldHeight = b.p.height b.p.height = b.p.ztop - b.p.zbottom _checkBlockHeight(b) self._conserveComponentDensity(b, oldHeight, oldComponentVolumes) # set block mid point and redo mesh # - functionality based on assembly.calculateZCoords() b.p.z = b.p.zbottom + b.p.height / 2.0 mesh.append(b.p.ztop) b.spatialLocator = self.linked.a.spatialGrid[0, 0, ib] # pylint: disable = protected-access bounds = list(self.linked.a.spatialGrid._bounds) bounds[2] = array(mesh) self.linked.a.spatialGrid._bounds = tuple(bounds)
[docs] def manageCoreMesh(self, r): """ manage core mesh post assembly-level expansion Parameters ---------- r : :py:class:`Reactor <armi.reactor.reactors.Reactor>` object. ARMI reactor to have mesh modified Notes ----- - if no detailedAxialExpansion, then do "cheap" approach to uniformMesh converter. - update average core mesh values with call to r.core.updateAxialMesh() - oldMesh will be None during initial core construction at processLoading as it has not yet been set. """ if not self._detailedAxialExpansion: # loop through again now that the reference is adjusted and adjust the non-fuel assemblies. for a in r.core.getAssemblies(): a.setBlockMesh(r.core.refAssem.getAxialMesh()) oldMesh = r.core.p.axialMesh r.core.updateAxialMesh() if oldMesh: runLog.extra("Updated r.core.p.axialMesh (old, new)") for old, new in zip(oldMesh, r.core.p.axialMesh): runLog.extra(f"{old:.6e}\t{new:.6e}")
def _conserveComponentDensity(self, b, oldHeight, oldVolume): """Update block height dependent component parameters 1) update component volume for all materials (used to compute block volume) 2) update number density for solid materials only (no fluid) Parameters ---------- oldHeight : list of floats list containing block heights pre-expansion oldVolume : list of floats list containing component volumes pre-expansion """ solidComponents = _getSolidComponents(b) for ic, c in enumerate(b): c.p.volume = oldVolume[ic] * b.p.height / oldHeight if c in solidComponents: growFrac = self.expansionData.getExpansionFactor(c) if growFrac >= 0.0: growth = 1.0 + growFrac else: growth = 1.0 / (1.0 - growFrac) for key in c.getNuclides(): c.setNumberDensity(key, c.getNumberDensity(key) / growth)
def _getSolidComponents(b): """ Return list of components in the block that have solid material. Notes ----- Axial expansion only needs to be applied to solid materials. We should not update number densities on fluid materials to account for changes in block height. """ return [c for c in b if not isinstance(c.material, material.Fluid)] def _checkBlockHeight(b): if b.p.height < 3.0: runLog.debug( "Block {0:s} ({1:s}) has a height less than 3.0 cm. ({2:.12e})".format( b.name, str(b.p.flags), b.p.height ) ) if b.p.height < 0.0: raise ArithmeticError( "Block {0:s} ({1:s}) has a negative height! ({2:.12e})".format( b.name, str(b.p.flags), b.p.height ) )
[docs]class AssemblyAxialLinkage: """Determines and stores the block- and component-wise axial linkage for an assembly Attributes ---------- a : :py:class:`Assembly <armi.reactor.assemblies.Assembly>` object. reference to original assembly; is directly modified/changed during expansion. linkedBlocks : dict keys --> :py:class:`Block <armi.reactor.blocks.Block>` object values --> list of axially linked blocks; index 0 = lower linked block; index 1: upper linked block. see also: self._getLinkedBlocks() linkedComponents : dict keys --> :py:class:`Component <armi.reactor.components.component.Component>` object values --> list of axially linked components; index 0 = lower linked component; index 1: upper linked component. see also: self._getLinkedComponents """ def __init__(self, StdAssem): self.a = StdAssem self.linkedBlocks = {} self.linkedComponents = {} self._determineAxialLinkage() def _determineAxialLinkage(self): """gets the block and component based linkage""" for b in self.a: self._getLinkedBlocks(b) for c in b: self._getLinkedComponents(b, c) def _getLinkedBlocks(self, b): """retrieve the axial linkage for block b Parameters ---------- b : :py:class:`Block <armi.reactor.blocks.Block>` object block to determine axial linkage for Notes ----- - block linkage is determined by matching ztop/zbottom (see below) - block linkage is stored in self.linkedBlocks[b] _ _ | | | 2 | Block 2 is linked to block 1. |_ _| | | | 1 | Block 1 is linked to both block 0 and 1. |_ _| | | | 0 | Block 0 is linked to block 1. |_ _| """ lowerLinkedBlock = None upperLinkedBlock = None block_list = self.a.getChildren() for otherBlk in block_list: if b.name != otherBlk.name: if b.p.zbottom == otherBlk.p.ztop: lowerLinkedBlock = otherBlk elif b.p.ztop == otherBlk.p.zbottom: upperLinkedBlock = otherBlk self.linkedBlocks[b] = [lowerLinkedBlock, upperLinkedBlock] if lowerLinkedBlock is None: runLog.debug( "Assembly {0:22s} at location {1:22s}, Block {2:22s}" "is not linked to a block below!".format( str(self.a.getName()), str(self.a.getLocation()), str(b.p.flags), ) ) if upperLinkedBlock is None: runLog.debug( "Assembly {0:22s} at location {1:22s}, Block {2:22s}" "is not linked to a block above!".format( str(self.a.getName()), str(self.a.getLocation()), str(b.p.flags), ) ) def _getLinkedComponents(self, b, c): """retrieve the axial linkage for component c Parameters ---------- b : :py:class:`Block <armi.reactor.blocks.Block>` object key to access blocks containing linked components c : :py:class:`Component <armi.reactor.components.component.Component>` object component to determine axial linkage for Raises ------ RuntimeError multiple candidate components are found to be axially linked to a component """ lstLinkedC = [None, None] for ib, linkdBlk in enumerate(self.linkedBlocks[b]): if linkdBlk is not None: for otherC in linkdBlk.getChildren(): if _determineLinked(c, otherC): if lstLinkedC[ib] is not None: errMsg = ( "Multiple component axial linkages have been found for " "Component {0}; Block {1}; Assembly {2}." " This is indicative of an error in the blueprints! Linked components found are" "{3} and {4}".format( c, b, b.parent, lstLinkedC[ib], otherC ) ) runLog.error(msg=errMsg) raise RuntimeError(errMsg) lstLinkedC[ib] = otherC self.linkedComponents[c] = lstLinkedC if lstLinkedC[0] is None: runLog.debug( "Assembly {0:22s} at location {1:22s}, Block {2:22s}, Component {3:22s} " "has nothing linked below it!".format( str(self.a.getName()), str(self.a.getLocation()), str(b.p.flags), str(c.p.flags), ) ) if lstLinkedC[1] is None: runLog.debug( "Assembly {0:22s} at location {1:22s}, Block {2:22s}, Component {3:22s} " "has nothing linked above it!".format( str(self.a.getName()), str(self.a.getLocation()), str(b.p.flags), str(c.p.flags), ) )
def _determineLinked(componentA, componentB): """determine axial component linkage for two components Parameters ---------- componentA : :py:class:`Component <armi.reactor.components.component.Component>` component of interest componentB : :py:class:`Component <armi.reactor.components.component.Component>` component to compare and see if is linked to componentA Notes ----- - Requires that shapes have the getCircleInnerDiameter and getBoundingCircleOuterDiameter defined - For axial linkage to be True, components MUST be solids, the same Component Class, multiplicity, and meet inner and outer diameter requirements. - When component dimensions are retrieved, cold=True to ensure that dimensions are evaluated at cold/input temperatures. At temperature, solid-solid interfaces in ARMI may produce slight overlaps due to thermal expansion. Handling these potential overlaps are out of scope. Returns ------- linked : bool status is componentA and componentB are axially linked to one another """ if ( (componentA.containsSolidMaterial() and componentB.containsSolidMaterial()) and isinstance(componentA, type(componentB)) and (componentA.getDimension("mult") == componentB.getDimension("mult")) ): if isinstance(componentA, UnshapedComponent): runLog.warning( f"Components {componentA} and {componentB} are UnshapedComponents " "and do not have 'getCircleInnerDiameter' or getBoundingCircleOuterDiameter methods; " "nor is it physical to do so. Instead of crashing and raising an error, " "they are going to be assumed to not be linked.", single=True, ) linked = False else: idA, odA = ( componentA.getCircleInnerDiameter(cold=True), componentA.getBoundingCircleOuterDiameter(cold=True), ) idB, odB = ( componentB.getCircleInnerDiameter(cold=True), componentB.getBoundingCircleOuterDiameter(cold=True), ) biggerID = max(idA, idB) smallerOD = min(odA, odB) if biggerID >= smallerOD: # one object fits inside the other linked = False else: linked = True else: linked = False return linked
[docs]class ExpansionData: """object containing data needed for axial expansion""" def __init__(self, a, setFuel): self._a = a self.componentReferenceHeight = {} self.componentReferenceTemperature = {} self._expansionFactors = {} self._componentDeterminesBlockHeight = {} self._setTargetComponents(setFuel)
[docs] def setExpansionFactors(self, componentLst, percents): """sets user defined expansion factors Parameters ---------- componentLst : list of :py:class:`Component <armi.reactor.components.component.Component>` list of :py:class:`Component <armi.reactor.components.component.Component>` objects to have their heights changed # pylint: disable=line-too-long percents : list of floats list of height changes in percent that are to be applied to componentLst Raises ------ RuntimeError If componentLst and percents are different lengths Notes ----- - requires that the length of componentLst and percents be the same """ if len(componentLst) != len(percents): runLog.error( "Number of components and percent changes must be the same!\n\ len(componentLst) = {0:d}\n\ len(percents) = {1:d}".format( len(componentLst), len(percents) ) ) raise RuntimeError for c, p in zip(componentLst, percents): self._expansionFactors[c] = p
[docs] def updateComponentTempsBy1DTempField( self, tempGrid, tempField, updateNDensForRadialExp: bool = True ): """assign a block-average axial temperature to components Parameters ---------- tempGrid : numpy array 1D axial temperature grid (i.e., physical locations where temp is stored) tempField : numpy array temperature values along grid updateNDensForRadialExp: optional, bool boolean to determine whether or not the component number densities should be updated to account for radial expansion/contraction Notes ----- - given a 1D axial temperature grid and distribution, searches for temperatures that fall within the bounds of a block, and averages them - this average temperature is then passed to self.updateComponentTemp() - Setting updateNDensForRadialExp to False isolates the number density changes due to the temp change to just the axial dim. This is useful for testing. However, in practical use updateNDensForRadialExp should be set to True to capture radial expansion/contraction effects associated with updating the component temperature. Raises ------ ValueError if no temperature points found within a block RuntimeError if tempGrid and tempField are different lengths """ if len(tempGrid) != len(tempField): runLog.error("tempGrid and tempField must have the same length.") raise RuntimeError self.componentReferenceTemperature = {} # reset, just to be safe for b in self._a: tmpMapping = [] for idz, z in enumerate(tempGrid): if b.p.zbottom <= z <= b.p.ztop: tmpMapping.append(tempField[idz]) if z > b.p.ztop: break if len(tmpMapping) == 0: raise ValueError( "Block {0:s} has no temperature points within it! \ Likely need to increase the refinement of the temperature grid.".format( str(b.name) ) ) blockAveTemp = mean(tmpMapping) for c in b: self.updateComponentTemp(b, c, blockAveTemp, updateNDensForRadialExp)
[docs] def updateComponentTemp( self, b, c, temp: float, updateNDensForRadialExp: bool = True ): """update component temperatures with a provided temperature Parameters ---------- b : :py:class:`Block <armi.reactor.blocks.Block>` object parent block for c c : py:class:`Component <armi.reactor.components.component.Component>` object component object to which the temperature, temp, is to be applied temp : float new component temperature in C updateNDensForRadialExp : bool boolean to determine whether or not the component number densities should be updated to account for the radial expansion/contraction associated with the new temperature Notes ----- - "reference" height and temperature are the current states; i.e. before 1) the new temperature, temp, is applied to the component, and 2) the component is axially expanded - Setting updateNDensForRadialExp to False isolates the number density changes due to the temp change to just the axial dim. This is useful for testing. However, in practical use updateNDensForRadialExp should be set to True to capture radial expansion/contraction effects associated with updating the component temperature. """ self.componentReferenceHeight[c] = b.getHeight() self.componentReferenceTemperature[c] = c.temperatureInC if not updateNDensForRadialExp: # Update component temp manually to avoid the call to changeNDensByFactor(f) within c.setTemperature(). # This isolates the number density changes due to the temp change to just the axial dim. # This is useful for testing. c.temperatureInC = temp c.p.volume = c.getArea(cold=True) * b.getHeight() else: c.setTemperature(temp) c.p.volume = c.getArea(cold=False) * b.getHeight()
[docs] def computeThermalExpansionFactors(self): """computes expansion factors for all components via thermal expansion""" for b in self._a: for c in b: if c in self.componentReferenceTemperature: self._expansionFactors[c] = ( c.getThermalExpansionFactor( T0=self.componentReferenceTemperature[c] ) - 1.0 ) elif self.componentReferenceTemperature: # we want expansion factors relative to componentReferenceTemperature not Tinput. # But for this component there isn't a componentReferenceTemperature, # so we'll assume that the expansion factor is 0.0. self._expansionFactors[c] = 0.0 else: self._expansionFactors[c] = c.getThermalExpansionFactor() - 1.0
[docs] def getExpansionFactor(self, c): """retrieves expansion factor for c Parameters ---------- c : :py:class:`Component <armi.reactor.components.component.Component>` object :py:class:`Component <armi.reactor.components.component.Component>` object to retrive expansion factor for """ if c in self._expansionFactors: value = self._expansionFactors[c] else: value = 0.0 return value
def _setTargetComponents(self, setFuel): """sets target component for each block Parameters ---------- setFuel : bool boolean to determine if fuel block should have its target component set. Useful for when target components should be determined on the fly. """ for b in self._a: if b.axialExpTargetComponent is not None: self._componentDeterminesBlockHeight[b.axialExpTargetComponent] = True elif b.hasFlags(Flags.PLENUM) or b.hasFlags(Flags.ACLP): self.determineTargetComponent(b, Flags.CLAD) elif b.hasFlags(Flags.DUMMY): self.determineTargetComponent(b, Flags.COOLANT) elif setFuel and b.hasFlags(Flags.FUEL): self._isFuelLocked(b) else: self.determineTargetComponent(b)
[docs] def determineTargetComponent(self, b, flagOfInterest=None): """appends target component to self._componentDeterminesBlockHeight Parameters ---------- b : :py:class:`Block <armi.reactor.blocks.Block>` object block to specify target component for flagOfInterest : :py:class:`Flags <armi.reactor.flags.Flags>` object the flag of interest to identify the target component Notes ----- - if flagOfInterest is None, finds the component within b that contains flags that are defined in a preferred order of flags, or barring that, in b.p.flags - if flagOfInterest is not None, finds the component that contains the flagOfInterest. Raises ------ RuntimeError no target component found RuntimeError multiple target components found """ if flagOfInterest is None: # Follow expansion of most neutronically important component, fuel first then control/poison for targetFlag in TARGET_FLAGS_IN_PREFERRED_ORDER: componentWFlag = [c for c in b.getChildren() if c.hasFlags(targetFlag)] if componentWFlag != []: break # some blocks/components are not included in the above list but should still be found if not componentWFlag: componentWFlag = [c for c in b.getChildren() if c.p.flags in b.p.flags] else: componentWFlag = [c for c in b.getChildren() if c.hasFlags(flagOfInterest)] if len(componentWFlag) == 0: raise RuntimeError("No target component found!\n Block {0}".format(b)) if len(componentWFlag) > 1: raise RuntimeError( "Cannot have more than one component within a block that has the target flag!" "Block {0}\nflagOfInterest {1}\nComponents {2}".format( b, flagOfInterest, componentWFlag ) ) self._componentDeterminesBlockHeight[componentWFlag[0]] = True
def _isFuelLocked(self, b): """physical/realistic implementation reserved for ARMI plugin Parameters ---------- b : :py:class:`Block <armi.reactor.blocks.Block>` object block to specify target component for Raises ------ RuntimeError multiple fuel components found within b Notes ----- - This serves as an example to check for fuel/clad locking/interaction found in SFRs. - A more realistic/physical implementation is reserved for ARMI plugin(s). """ c = b.getChildrenWithFlags(Flags.FUEL) if len(c) == 0: # pylint: disable=no-else-raise raise RuntimeError("No fuel component within {0}!".format(b)) elif len(c) > 1: raise RuntimeError( "Cannot have more than one fuel component within {0}!".format(b) ) self._componentDeterminesBlockHeight[c[0]] = True
[docs] def isTargetComponent(self, c): """returns bool if c is a target component Parameters ---------- c : :py:class:`Component <armi.reactor.components.component.Component>` object :py:class:`Component <armi.reactor.components.component.Component>` object to check target component status """ return bool(c in self._componentDeterminesBlockHeight)